6

Syllables, Vowel Length and the Spread of Suprasegmentals

MARK DONOHUE

6.1 Introduction

The syllable has had a checkered history in linguistics, emerging from exile only relatively recently (see, for instance, Clements and Keyser 1983; Mohanan 1985; Blevins 1995). In Palu’e, an Austronesian language of southern Indonesia, we find conflicting evidence concerning the status of phonetically long vowels. On the one hand we wish to consider the length to be purely due to a moraicity constraint on foot size; long vowels are long (and monosyllabic) because the word needs length. On the other hand, evidence from the interaction of a word-boundary effect that induces breathiness on the left edge (see Hajek (in press) for an areal overview), and nasal spreading from the right within the word implies that long vowels should treated as two separate segmental units, and thus two syllables. In this note I shall explore the phonetics of nasality and breathiness in Palu’e, concluding that phonetically long vowels are ambiguous, sometimes showing the behaviour of monosyllables, and sometimes that of disyllables.2

1Palu’e is described, briefly, only in Donohue (2000a, 2005b); this is the first work to deal with aspects of the phonology of the language. The language has the following segmental phonemes: aspiration in contrastive only initially; voiced stops are generally restricted to medial position: /b d g/; /p t k/; /n m ng/; /s r l j/.

2Shortly after moving to Singapore and meeting Mohanan, I considered learning (some) Malaysian. I could already speak (some) Malay and (some less) Mandarin, two languages useful in Singapore (after Singlish), and it seemed only fair to learn something Dravidian as well, to be more respectful to the Indian community. Malaysian certainly is one of the great sounding languages of the world, so why not? Balanced against the presence of Tamil and Mohanan, two
6.2 Lexical Roots in Palu’e and the Monosyllabic of V:

The lexical root in Palu’e is bimoric, with representative examples shown in (1); bimoricity can be achieved by having either two short vowels, or else one long vowel, in the root. We can note that long vowels are found only in roots of the form CVV/ (or CV), where they are obligatory, and so cannot be considered to be phoemic. The forms in (2) all violate bimoricity, by containing more than just two short vowels in one root. In (3) we see that a root that contains only one vowel cannot be realised with that vowel short: it must be long. (Many other phonotactically impossible words are of course conceivable, such as any consonant-final root; the only codas permitted are found in words with a clitic, as in (4), (6) and (7). These nasals are not moraic.) In (4) we can see that a root that shows a long vowel in isolation shows only a normal-length vowel when the 1SG nominative clitic ak- is added; when another mora is present, the vowel is not lengthened.

1. a. [t’a.ba] ‘head’ b. [t’a] ‘small bamboo’
 [t’u.ba] ‘blunt’ [t’u] ‘knee’

2. */CVV, CVV/*CVV, CVV/*CVV

3. *[CVV]

4. a. thu ‘push’ b. ak-thu ‘I push’
 [t’u^n], *[t’u] [t’u] [t’u] [t’u] [t’u]

The CV position in the syllable is optional: VCV, CVV and VV are also valid words, with the proviso that V1 cannot be the same as V2. There is a general ban on heterosyllabic long vowels, as can be seen in the behaviour of the emphatic clitic on the words in (5). While it can be added to any word, the combination of a word ending with /e/ and the emphatic clitic is a single, non-long, vowel. (Sequences of two vowels, including those seen in (5), are invariably syllabified as separate syllables; thus /t’ei/ ‘wait’ is four syllables long, [t’ei], not two, *[t’ei].)

Nasality spreads leftward from a nasal consonant. This is true both of root-internal nasals, as in (7), and of nasals that are part of genitive clitics, as in (8).

5. a. [t’a.na] ‘land’
 *[t’a.na], *[t’a.na], *[t’a.na]

6. [t’a.ba-] ‘my/my (exclusive) head(s)’
 [t’a.ba-de] ‘our (inclusive) head(s)’
 [t’a.bä-mo] ‘your head(s)’ ~ [t’a.bä-mo] ‘your head(s)’
 [t’a.bä-ne] ‘her/his head(s)’ ~ [t’a.bä-ne] ‘her/his head(s)’
 *[t’a.bä-mo], *[t’a.bä-ne], etc.

7. [t’a.ni] ‘land’

8. [t’a.ta] ‘my/my (exclusive) head(s)’
 [t’a.ta-de] ‘our (inclusive) head(s)’
 [t’a.ta-mo] ‘your head(s)’ ~ [t’a.ta-mo] ‘your head(s)’
 [t’a.ta-ne] ‘her/his head(s)’ ~ [t’a.ta-ne] ‘her/his head(s)’

9. [t’a.ta-mo], [t’a.ta-ne], etc.

We can suppose that the structures in (6a) and (6b) represent the syllables seen in (1a) and (1b), respectively; because of the ban on the occurrence of identical adjacent vowels, and the fact that long vowels are not underlyingly specified, as well as the reasons presented in the remainder of this paper, (6c) cannot be taken to represent the syllable type seen in (1b) (specifically, ta ‘small bamboo’).

For the purposes of this short note I shall ignore the phonology of epenthetic vowels, which are found when a root has the shape CCV. There are many reasons to believe that we should treat these CCV roots as not being completely “normal”: the penultimate syllable is never stressed, in contrast to the more modal roots in (1), and this syllable always has a reduced vowel; CVCV, [k’o’o] ‘grow’. Further evidence of differentiation of these roots from normal roots can be found in co-occurrence restrictions between C1 and C2, which are different in CVV roots than in CVVC roots.

*For the purposes of this short note I shall ignore the phonology of epenthetic vowels, which are found when a root has the shape CCV. There are many reasons to believe that we should treat these CCV roots as not being completely “normal”: the penultimate syllable is never stressed, in contrast to the more modal roots in (1), and this syllable always has a reduced vowel; CVCV, [k’o’o] ‘grow’. Further evidence of differentiation of these roots from normal roots can be found in co-occurrence restrictions between C1 and C2, which are different in CVV roots than in CVVC roots.
Nasality can spread beyond a single syllable, provided there is no intervening supralaryngeal consonant. (8) additionally shows that nasality cannot spread through a supralaryngeal consonant, while (9) shows that a glottal stop is transparent for the purposes of nasal spreading.

(9) [tʰɔʔ.ʔ-] ‘her/his faceas’
*[^tʰɔʔ.ʔ₃-], *[^tʰɔʔ.ʔ₄-], *[^tʰɔʔ.ʔ₅-]

(10) demonstrates that, in the absence of any intervening consonant, nasality can continue to spread leftward beyond the syllable on which it is specified.

(10) [tʰɔ.ʔ₃-] ‘her/his palm wine’
*[^tʰɔ.ʔ₃-], *[^tʰɔ.ʔ₄-], *[^tʰɔ.ʔ₅-] (*[^tʰɔ.ʔ₆-], etc.)

When a word does not have an initial consonant, the initial vowel is realised with breathy voice, as in (11a). In the event of a root of the form VV, (11b), the breathiness is only realised on the first vowel. In the event of a root of the form V, (11c), the vowel being necessarily long due to the bimoraicity requirement (see (6)), the entire bimoraic vowel displays breathiness.

(11) a. [a.t₃a] ‘person’ *[^a.t₃a], *[^a.t₅a], *[^a.t₆a]
 b. [ŋ.a] ‘rattan, tuber’ *[^ŋ.a], *[^t₅.a], *[^t₆.a]
 c. [y] ‘wake (=^[y.])’ *[^y.], *[^t₅.y], *[^t₆.y]

The fact that breathiness is found all through the word of ‘wake (of a boat)’ in (11c), but not all the way through the sequence of two vowels in (11b), is another argument for the treatment of CV: roots such as those seen in (1b) as a single vowel that has been lengthened by a moraicity constraint, and not as a sequence of two vowels in separate syllables.5 As seen in (11a), breathiness does not spread through the medial consonant in a VCV root.6

The question that confronts us can be formulated as follows. There are two processes (other than stress assignment) which apply at units greater than the segment: (i) nasalisation spreads leftward in a word; (ii) breathiness applies to a word-initial vowel. How do these two phonological factors interact? What is the realisation of a syllable that is on the one hand expected to be nasal (because of a following nasal consonant), and breathy (because of its initial position)? Answering this question is not simple, and is discussed in the following sections.

6An alternative analysis would block breathiness spreading in all circumstances except when two vowels in an uninterrupted sequence had identical qualities. It is hard to imagine the phonetic motivations of such a constraint.
6Medial glottal stops following an initial onsetless syllable suppress breathiness in roots such as [ʔ.ʔ] ‘tail’. This is a principled exception to initial breathiness, involving the syllabification of the glottal stop (see (9)), but is not discussed here.

6.3 Competition Between Breathiness and Nasality
As a first approximation, there are four possible answers to the question posed about competition between breathiness and nasality. The obvious possibilities are:

1. the syllable is realised with nasality, and is not breathy;
2. the syllable is realised with breathy voice, and is not nasalised;
3. the syllable is realised with modal voicing and no nasalisation;
4. the syllable is simultaneously nasalised and breathy. (can an initial vowel bear both breathiness and nasality (for example, *[f]i?))

Given the form in (12), the first answer appears to be correct. The lexical item is *[u.ne], and the initial syllable is realised with nasalisation, and not with breathiness.

(12) [u.ne] ‘strait; inside’ *[^u.ne], *[^u.ne], *[f.[u.ne]]

We might explain this by noting that nasalisation reflects features that are lexically specified for the word in question, while breathiness is a boundary phenomenon. The ultimate answer becomes more complicated when we consider data such as that in (13). Here the lexical root is [u/ ‘wake’, seen earlier in (11), shown here with the third person genitive enclitic -ne, seen earlier in (8).

(13) [u-ne] ‘her/his wake’ (=^[u-ne])
*[^u-ne], *[t-u-ne], *[u-ne]

Clearly the description of vowel nasalisation must refer to more than just segmental adjacency (in the model presented in Mohanan (1986), we would refer to nasalisation spreading in both strata 1 and strata 4). Based just on (13), and ignoring (12) for the moment, we see that breathiness ‘wins’ over nasalisation: the [u/ is both followed by a nasal consonant, and is initial, but only breathiness is realised. Note, however, that (13) is a morphologically complex word, employing a genitive clitic from the set seen earlier in (8). Any nasalisation in the root would be due to the presence of the genitive clitic, and not part of the lexical root itself, so that the explanation given following (12) would not hold. There is supporting evidence for the exceptionality of clitics: clitics are not part of the prosodic domain that determines stress (see (5) and (8)), nor do they count for moraicity requirements, as can be seen in (14). Here we see that ‘my knee’, formed with the lexical root seen in (1) and the morphology encountered in (8), preserves the long vowel seen in the uninflected word.7

7This fact results in surface contrasts in vowel length, such as those found when we compare [ɾo-ne] ‘cloth (at the beginning of the weaving process)’ versus the bimoraic [ɾo-ne] ‘veranda piles’ [2GEN], which contrast as [ɾo.m₁] and [ɾo.m₂], respectively.
(14) [tu-.gu] 'my/our (exclusive) knee(s)'
 *[tu-.gu]

Additional evidence for the phonological exceptionalness of clitics can be found in the fact that there are C-only variants of clitics, as seen in (8), and that the most common vowel in the language, /u/, does not appear in any clitics (see (8) again, as well as (5)).

(13) illustrated the effect of encliticisation (with a nasal element) on a /V/ root with an NV clitic; in (15) we can see that a /VV/ root with clitic behaves somewhat differently, accommodating both the breathiness on the initial syllable, and the nasalisation on the second syllable. Breathiness applies to the first syllable, as predicted, while nasality spreads left from its segmental origin into the root, respecting the breathiness. Again, the nasality is not part of the lexical root; it lies to cross a morpheme boundary, and so can be considered to be weaker than the nasalisation seen in (12). Comparing (15) with (10) we can see that nasalisation did not spread as far as might have been expected; there is clearly competition between the regressive nasalisation and the progressive breathiness, and breathiness wins.\(^6\) (16) approximates the constraints on the realisation of quality in an initial vowel, based on (12), (13) and (15); the constraints are spelled out in (17) – (19).\(^9\)

(15) [u-.a-ne] 'her/his ratan'
 *[u-.a-ne], *[u-.a-ne], *[u-.a-ne], *[u-.a-ne]

(16) Nasality_LEXICAL \\(\supseteq\) InitialBreath_Boundary \\(\supseteq\) Nasality_NON_LEXICAL

(17) Nasality_LEXICAL
 Realise and spread nasality that is part of the specification of a segment in the lexical root.

(18) InitialBreath_Boundary
 The left edge of words should be bounded either by a segmental onset, or else by breathiness that distinguishes the first vowel.

(19) Nasality_NON_LEXICAL
 Realise and spread nasality that is not part of the specification of a segment in the lexical root, but appears through inflection.

The application of these constraints, along with an invariable constraint against any syllable simultaneously showing both breathiness and nasality, is shown in (20), dealing with the forms seen in (15).\(^{10}\)

\[
\begin{array}{cccc}
\text{\textit{Breathy}} & \text{NasAL} & \text{NasLex} & \text{Initial Breath} \\
\hline
\text{[u-.a-ne]} & \text{\textit{Breathy}} & \text{NasAL} & \text{\textit{Breathy}} \\
\text{[u-.a-ne]} & \text{NasAL} & \text{\textit{Breathy}} & \text{\textit{Breathy}} \\
\text{[u-.a-ne]} & \text{\textit{Breathy}} & \text{NasAL} & \text{\textit{Breathy}} \\
\text{[u-.a-ne]} & \text{NasAL} & \text{\textit{Breathy}} & \text{\textit{Breathy}} \\
\text{[u-.a-ne]} & \text{\textit{Breathy}} & \text{NasAL} & \text{\textit{Breathy}} \\
\end{array}
\]

The monomorphemic root seen in (12) is shown in (21); we presume that the initial vowel cannot be spread over two syllables to allow the same solution as was seen in (15) and (20) because of a general constraint against the proliferation of non-lexical structure ("\textit{STRUC}_\text{O}") (in order to allow the vowel lengthening seen in (1), we must rank this constraint below the constraint requiring binatorically). In (21) we can see that the fact that the nasality feature is part of the lexical item means that its preservation is more highly ranked than non-lexical nasality, such as appears in the genitive clitic, and so initial breathy voicing is not heard.

\[
\begin{array}{cccc}
\text{\textit{Breathy}} & \text{NasAL} & \text{NasLex} & \text{Initial Breath} \\
\hline
\text{[u-\textit{ne}]} & \text{\textit{Breathy}} & \text{NasAL} & \text{\textit{Breathy}} \\
\text{[u-.ne]} & \text{\textit{Breathy}} & \text{NasAL} & \text{\textit{Breathy}} \\
\end{array}
\]

For the sake of comparison, the segmentally identical, but morphologically distinct word seen in (13) is shown in (22). Because the only nasality specifications in this example are part of the genitive clitic, their preservation is less highly ranked, and the initial breathy boundary surfaces, despite the presence of the adjacent nasal segment. Note that the vowel is long, in keeping with the monosyllabic nature of the root /u/ (see (14) for discussion).

\(^{10}\)This constraint might seem stipulative, but the fact that both breathiness and nasality require (significantly) greater airflow means that it is unlikely that nasalised, breathy-quality vowels can easily be produced, and certainly not that they would survive in a language in which no phonemic status is associated with either of breathiness or nasalisation.

\(^{\text{See}}\) Peng (this volume) for a similar case of two processes spreading and coming into competition; in Kikuyu place spreads regressive, and voicing spreads regressive. Peng shows that the progressive spread of voicing is blocked in highly specific circumstances; in Pali\'c, as we shall see in section 1.4, it is the regressive process that is (partially) blocked.

\(^{\text{There}}\) are no known roots of the form VVN_V or V_VNC_V. If any existed, they would be compound words spread over two feet.
(22)

<table>
<thead>
<tr>
<th>lm + /ne/</th>
<th>*Breathy Nasal</th>
<th>Initial Breath</th>
<th>NaS_NON-Lex</th>
</tr>
</thead>
<tbody>
<tr>
<td>[tú-ne]</td>
<td>0</td>
<td>#1</td>
<td></td>
</tr>
<tr>
<td>[tú-ne]</td>
<td>o</td>
<td>#1</td>
<td></td>
</tr>
<tr>
<td>[tú-ne]</td>
<td>o</td>
<td>#1</td>
<td></td>
</tr>
<tr>
<td>[tú-ne]</td>
<td>o</td>
<td>#1</td>
<td></td>
</tr>
</tbody>
</table>

I shall not consider consonant-initial roots in detail, since the initial breathiness does not apply to them, and so nasalisation spreads without any competition.

6.4 Codas, A Discussion Concerning Short Vowels, and the Argument for Dissyllabic Long Vowels

Another syllable type is relevant to this discussion, and merits a short aside for the purposes of clarity. We have seen, in (7) and (9), that when the monosyllabic (and, consequently, nonsyllabic) variant of the third person genitive clitic -a is added to a root the final vowel is realised as a short, lax version of the lexical vowel; additional forms supporting this conclusion are shown in (23) and (24), where it is clear that [b] (-[b]) alternates with [u], and [i] with [i], in closed syllables. (Similar alternations between [b] and [e], [i] and [e], and also [b] and [a], are also found.)

(23)

a. [tú-tu] ‘k.o basket’
b. [tú-tó-n] ‘her/his basket’
c. [tú-tú-ne] ‘her/his basket’

(24)

a. [tú-bi] ‘necklace’
b. [tú-bó-n] ‘her/his necklace’
c. [tú-bi-ne] ‘her/his necklace’

This clearly allows the possibility of a following nasal consonant to be in coda position in the same syllable, rather than appearing in a following syllable. The same short, lax vowels are also found monomorphemically, for instance preceding prenasalised stops, as can be seen in (25).

(25)

a. [túm-ba] ‘spear’ b. [túm-ba] ‘weigh’

Parenthetically, but to complete the phonetic picture, we can note that vowel-initial words with a medial prenasalised stop are vanishingly rare, but at least one is attested; here we can see that the short vowel does not allow enough time for the breathiness to be realised; this is a simple articulatory constraint, since breathy voice takes a longer time to activate than does modal voicing (e.g., Gerfen 1999). It provides us, however, with evidence that the constraints shown in (16) do not represent the whole picture.

(26)

[ˈt̪um-ba], ‘door’
[ˈt̪um-ba], *[ˈt̪um-ba], *[ˈt̪um-

The other source of nasal initials on vowel-initial words is the nonsyllabic genitive clitics, which we have already seen in (6) and more recently in (16) and (17). Before examining their use on vowel-initial words, we need to note that when these clitics occur with a long vowel (necessarily found in a CV root), the entire long vowel is nasalised, and that the open syllable allophone of the vowel is heard even when the genitive clitic is monosyllonantal.

(27)

[ˈt̪uː-ne] ‘her/his knee’ (= [ˈt̪uː-ne])
[ˈt̪uː-n] ‘her/his knee’ (= [ˈt̪uː-n]) *[ˈt̪ən]

Now we can examine vowel-initial roots with a nasal coda added in the form of a genitive clitic. In (28) we can see a /VV/ root with the third person clitic -a added. The first syllable is realised with breathy voice, and the second syllable with nasalisation. This repeats the results seen when the -ne clitic was added in (15): the appearance of the nasal in the coda of the second syllable does not result in patterns any different to the appearance of a nasal in a syllable following the second syllable, other than resulting in a short, lax allophone of the /a/ vowel.

(28)

[ˈuːn] ‘her/his rattan’
[ˈuːn], *[ˈuːn], *[ˈuːn], etc.

When we examine the addition of a -u clitic to monosyllabic roots (V/, thus realised as [V] due to the binorality constraint), we find intriguing differences with the forms that have the -ne clitic seen earlier in (12). In (29) we see /lu/ ‘wake, ripple’ with -a added. The long vowel begins with breathy voicing, and then is realised as nasalised (and modal) at the end of its length. This contrasts with the forms obtained when -ne was added, in (12), in which breathiness is found throughout the entire length of the vowel.

(29)

[ˈuːn] ‘her/his wake’ (*[ˈuːn], *[ˈuːn], *[ˈuːn], *[ˈuːn])

The forms found in (29) are analogous to those seen in (28), but (28) is a /VV/ root, and (29) represents a /V/ root. Are we now to treat [u] as being underlyingly a sequence of two identical vowels, /uu/? If so, this presents a dilemma: the new data contradict much of the evidence that we have seen earlier that supports the idea that the long vowel monosyllables are not lexical.

35The data shown here for u are identical for all monosyllabic roots. Given that there are only five vowels in Pulu’s, there are not many such roots in addition to a ‘wake’ we also find i ‘flesh’ and a ‘one’ (the absence of said vowels in monosyllabic roots is accidental, and reflects the continued operation of a low-ranked constraint against non-peripheral vowels, such as is commonly attested in Austroasiatic languages that have more than three vowels). Note also that these data are not simply low-level, automatic phonetic assimilations: speakers, when asked to speak very slowly, will clearly produce first a breathy mora, and then a nasalised mora.
but simply phonetic responses to foot binarity requirements. A summary of
the different arguments is shown in (30).

(30) **TEST**

<table>
<thead>
<tr>
<th>[V:] = /V,V/</th>
<th>[V:] = /V/</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phonotactically restricted?</td>
<td>✓</td>
</tr>
<tr>
<td>Instability under proclitisation</td>
<td>✓</td>
</tr>
<tr>
<td>[Vₐ,Vₐ], but [Vₐ,Vₐ]</td>
<td>✓</td>
</tr>
<tr>
<td>Nasal spreading</td>
<td>✓</td>
</tr>
<tr>
<td>Breathness spreading</td>
<td>✓</td>
</tr>
<tr>
<td>Breathness/nasality interaction</td>
<td>✓</td>
</tr>
</tbody>
</table>

In short, the data in (11) and elsewhere overwhelmingly differentiate [Vₐ,Vₐ] and [V:] roots, yet in (28) and (29) we see that these two root templates behave identically.

6.5 In Lieu of a Conclusion

There is no simple and obvious solution to the question of syllabic ity for the [[CV:]roots in Pulau’e, but I hope that this brief sketch of the issues has brought home one of the points that has made Mohanan’s work not only so engaging, but also so enduring: the attention to detail, and the refusal to accept a hypothesis, no matter how well argued and how well it accounts for the facts, until we can be sure that the facts really represent all of the available facts (see also Wee [this volume] and Peng [this volume] for examples of cases where a close attention to detail shows that the initially attractive, and simple, explanation is not adequate to the facts). If we were to have reached our final conclusions about syllable and root structure in Pulau’e excluding the final two examples, we would have arrived at a weaker understanding of the complexities involved in this issue, and a poorer understanding of the challenge of linguistics. Challenge has been a by-word of Mohanan to his students and colleagues for decades, and can, I hope, continue to be the byword of those same people as they confront their students and their research. The reason I hesitate to draw a firm conclusion is that I believe (and hope) that, as my knowledge of Pulau’e deepens, I will find that the account presented here fails to cover some as-yet unearthed specific cases. The linguist never really finishes, and the analysis is never really complete.

References
